

Gantry type 5-Axis Vertical Machining Center

BUFFALO MACHINERY CO., LTD.

56, Lane 318, Desheng Road, Daya District, Taichung City 428-46, Taiwan P.O. Box 320, Daya, Taichung City, Taiwan Tel: +886-4-25 60 37 59 Fax: +886-4-25 60 37 69 E-mail: info@mail.buffalo.com.tw www.buffalo-machinery.com

www.axilemachine.com

AXILE /'æksail/, stands for "agile"

Agility is the best word to define the identity of **AXILE**. Motor agility is the ability to move quickly and precisely, which is the essence of **high-speed machining**. Mental agility is the ability to think and understand quickly, to be **smart** in other words.

AXILE provides agile smart machining.

Highly sophisticated part manufacturers face the same problems everywhere: lower selling prices every day, higher costs and a shortage of specialized labour. AXILE propose highly productive machines based on high-speed and 5-axis technologies at very competitive prices.

The new AXILE line is built with standard high-tech design and components from world-class suppliers to ensure the best quality and reliability. AXILE patented SMT technology attains reaching high levels of accuracy and embraces Industrie 4.0 technologies, reliability is upgraded, maintenance costs minimized and downtime avoided.

AXILE products are proudly designed and manufactured at Buffalo´s facilities, one of the leading technology manufacturers in **Taichung (Taiwan)**. Taichung is the world's biggest **cluster of machine tool builders**, thanks to abundant specialized workforce and a component supply chain far more efficient than in any other country. The rationalized range of 3X and 5X high-speed VMC's covers only the most requested sizes to reach economies of scale to maintain reasonable market prices.

AXILE is conceived to conquer the premium market of 3X and 5X high-speed vertical machining centers. Such markets will grow and AXILE will be the real Asian big player amongst its European competitors.

AXILE, motor and mental agility at a competitive price.

Contents

Design concept	4
Agility	6
Smart technology	8
Reliability	9
Accuracy	10
Spindle	12
Chip management	13
Ergonomics	14
Tool management	15
Automation	16
Control unit	17
Standard & optional equipment	18
Layout and workspace	20
Technical data	22

Design concept

The structure

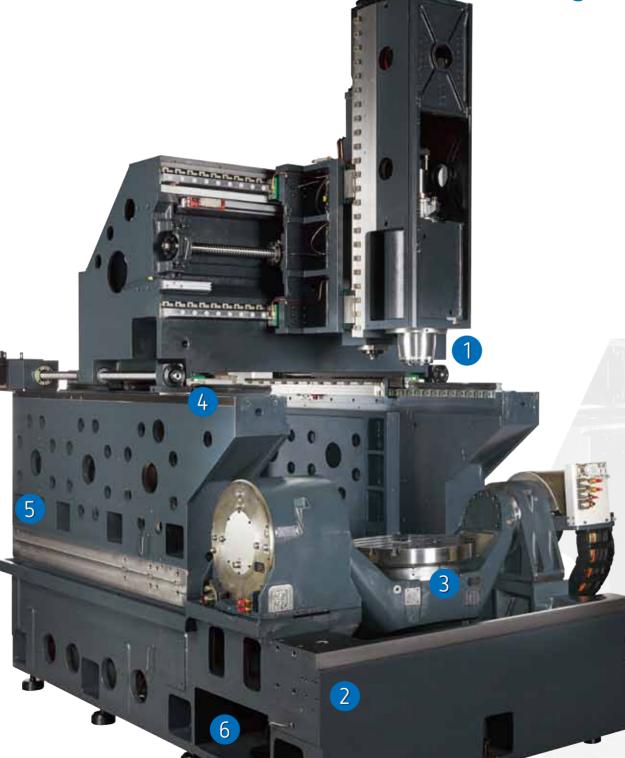
Spindle moved by 3 linear

No rotary axis between the tool and the machine body, for better machining rigidity.

Perfect U-shape closedgantry design

Same stability in all travels of X and Y axes

Excellent accessibility to working area


Table moved by swivellingrotary axes

Best accuracy with fixed relative position between 2 rotary axes.

Gantry:

best dynamics, accuracy

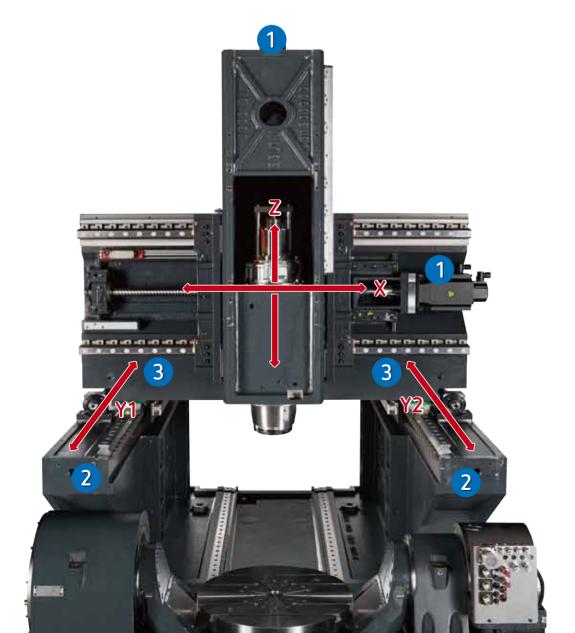
and ergonomics for 5X machines

Massive gantry sliding on 2 Best servo response to any symmetric synchronized axes milling forces

All body made of high-quality casting Optimal damping of machining vibrations

Homogeneous thermal

Integrated chip disposal channel directly under the


Quick evacuation of chips for high chip volume machining

Agility

Linear axes

	1
Direct driven servomotors (no belts/gears)	Best dynamic and minimal elasticity in the driving system
Double symmetric and synchronized axes (Y1, Y2)	Best dynamic for the gantry no matter the position of the
booble symmetric and synchronized axes (11, 12)	machining force
Linear scales with 0,001 µm resolution in X, Y1, Y2 and Z axes	Ensures optimal synchronization in Y1 and Y2 axes, and best accuracy for ALL axes
Double roller type linear guideways	Best high-feed movement and vibration damping
Double pre-loaded double-nut ballscrews	Minimized back-lash allowing high-feed movements

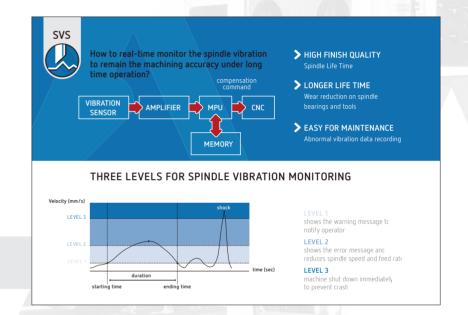
Swivelling-rotary axes

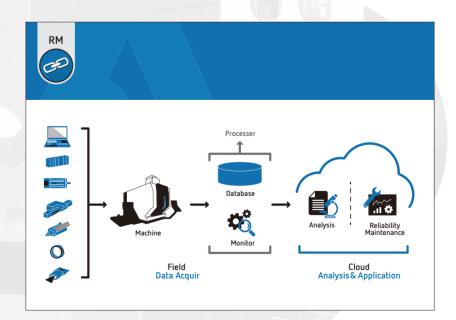
Integrated and ready-to-use hydraulic and pneumatic ports	Simplifying parts clamping process		
	2		
Torque motor-driven rotary axis (C)	Highest dynamics		
Torque motor-driven swivelling axis (A)	Highest accuracy		
And the second s			
Brakes in every shaft	High-repetibility in 4+1x operation when using the brakes		
High-resolution , direct absolute rotary measuring system	Zero-backlash and high accuracy		

Smart Technology

Smart Machining Technology (SMT)

High-speed and 5-axis technologies pursue lower manufacturing costs for complex products, but they also represent some serious challenges for accuracy and reliability. This is why Buffalo dedicated almost a decade to research the necessary knowledge to dominate such technologies. We call them SMT.


Axile Reliability Technology (ART)


Axile also embraces Industrie 4.0 and is developing its own patented technologies called ART. The main components of the machine will be equipped with sensors that collect relevant data like vibration, acceleration or temperature, to monitor working conditions in real-time.

Reliability

SMT and ART technologies are applied to predict Mean Time Between Failure (MTBF)

Vibration .

Accuracy

Linear axes accuracy

Ballscrew's thermal growth

0.001µm resolution absolute linear scales in ALL

> HIGH ACCURACY > REAL-TIME COMPENSATION

Angular deformation in AAC machine body causing linear errors

Accurancy

Cornerstone of 5-Axis machining

Rotary axes accuracy

Elasticity and backlash of driving system

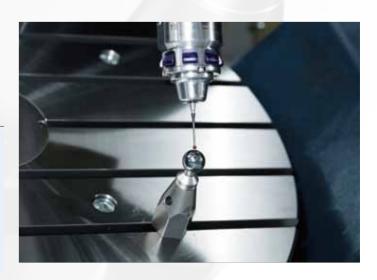
Direct-driven torque motors with no back-lash

Angular error is multiplied by the distance from rotary axis to machining point

+/- 5" accuracy absolute rotary scale feedback

Thermal control

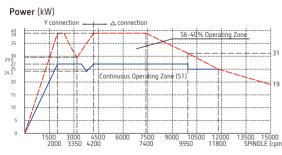
spindle and torque motors

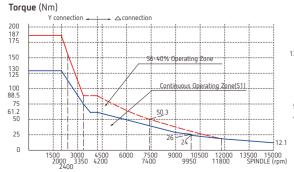

Heat generated by Spindle and torque motors are cooled with a water chiller close-circuit and a cooling unit

Linear-rotary axes relative positioning

The swivellingrotary table might shift its relative position to the 3 linear axes by many reasons generating an increasing error in the part

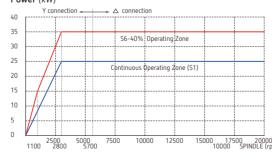

CNC embedded compensating functions like Kinematics (Heidenhain), Kinematic chain (Siemens) and Tilted working plane indexing (Fanuc)

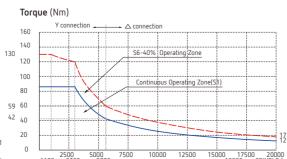

Spindle



High-performance built-in spindle selection

- **>** 15.000 rpm
- > Double coil synchronous motor
- > 130/187 Nm S1/S6-40%
- > 27/39 kW S1/S6-40%
- > HSK A63





> 20.000 rpm

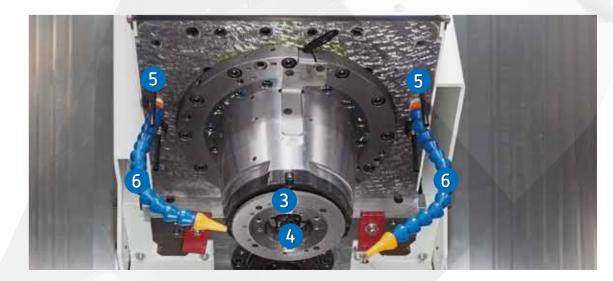
- > Double coil synchronous motor
- > 86/130 Nm S1/S6-40%
- > 25/35 kW S1/S6-40%
- > HSK A63

Power (kW)

Chip management

Flushing chips away

High-quality stainless steel work area Long-lasting clean operation


Sharp walls and no-corner design

Easier to flush away chips by shower

- 1 Chip wash down
- 2 Chip conveyor
- 3 4x coolant at spindle nose

13

- 4 Coolant through spindle
- 5 Air flushing
- 6 Coolant flushing

Ergonomics

Accessibility to work area

Large front door opening

Comfortable access to work area for workpiece preparation and supervision

Short distance from operator to table

Ergonomic loading and unloding of small parts

Automatic roof to open Easy loading and ceiling working area

unloading of heavy and bulky workpieces by over-head crane

Automatic roof for overhead crane loading and unloading

Roof closed

Automatic sliding of roof

Tool management

Easier tooling management and maintenance

Travel arm type magazine with 60 or 120 tools capacity

Unmanned operation with automation, sister tools and complex parts can be machined with no worries on tool magazine capacity

Vertical tool magazine and arm-type automatic tool change

Next tool preparation is executed during automatic machining operation for time saving.

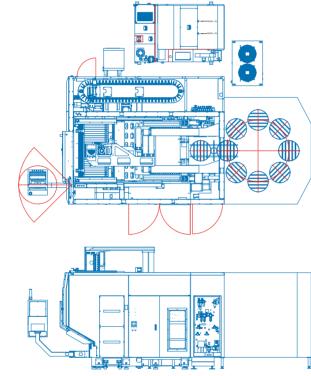
Tool change is fast and non-cutting time is reduced

Tools are accessible from the front-left side of the machine and stored in vertically

Tools can be easily changed during automatic operation in the same area for machining supervision, CNC panel and workpiece loading and unloading.

Smart tool: interface panel is used to select the tool. When finished, the system checks whether all tool HSK A-63 holders reducing down-time are in the right position

Avoid human failures when automatically change tool to spindle, protecting spindle and



Automation

Prepared for 24/7 unmanned operation

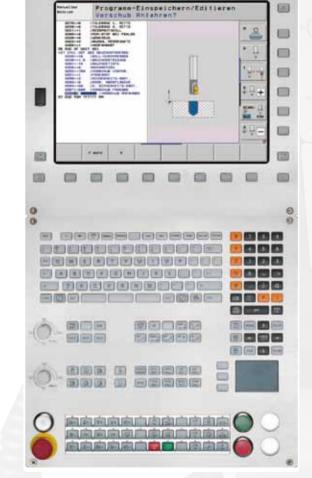
Flexible automation from back side of machine

Automation through the back-side of the working area

Front area is always free for the operator for supervision and manual loading-unloading

Control unit

A controller for every user


Heidenhain iTNC530 HSCI

- > Kinematics
- > Dynamic Collision Monitoring
- > Tool Center Point Management
- > Tilted the Working Plane

Siemens 840D sl

- > Kinematic chain
- > Collision Avoidance
- > 5-axis transformation with tool orientation
- > Swivel the Coordinate System

Heidenhain TNC640

Heidenhain TNC640

- > Kinematics
- > Dynamic Collision Monitoring
- > Tool Center Point Management
- > Tilted the Working Plane

Fanuc 31iMB5

- > 3D Interference Check
- > High Speed Smooth TCP
- > Tilted Working Plane indexing

Fanuc 31iMB5

17

Standard & optional equipment

Standard details of a premium machine

Optional design and organization of electrical connectors and cables

Easier maintenance

High-speed and twisting stress cycles

Chain-type chip conveyor with chip bucket, oil skimmer and built-in 20 bar through spindle coolant pump are standard equipments.

They can be positioned either side of the machine for layout customization.

All necessary consumables are located together in the back of the machine

Easier maintenance routine for operator

Integrated and ready-to-use 8 hydraulic or pneumatic ports. Clamping and unclamping functions by softkeys in the control panel and/or by M-function.

Simplifies 5X workpiece clamping.

Customize the machine to your needs

Automatic workpiece measurement (with probe, receiver and reference ball)

Automatic compensation of the linear-rotary axis relative positioning: Kinematics (Heidenhain), Kinematic chain (Siemens) and Tilted working plane indexing (Fanuc)

For accurate workpiece positioning or in-process measuring of some machining features.

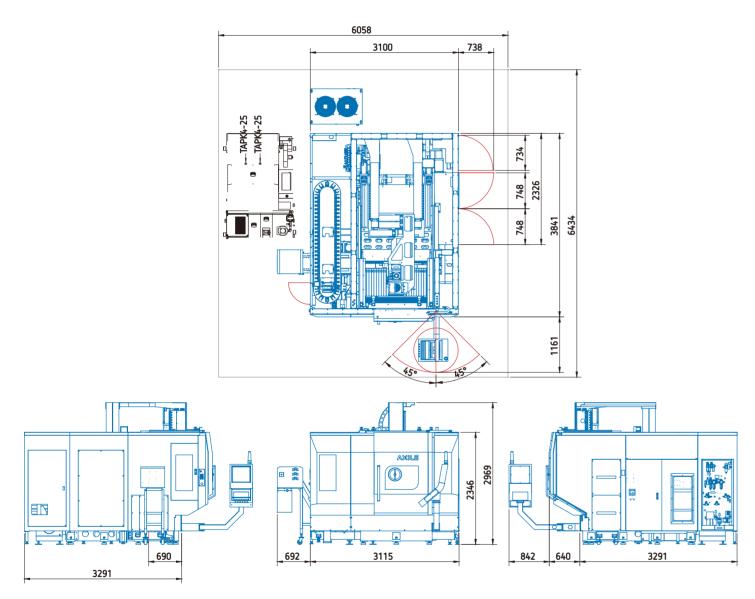
2 versions: U-type embedded in the table (for highest accuracy) or wall-to-wall type with protection gate (for best protection). Laser tool measurement. This option is used for:

For accurate tool measurement in length, radius and shape

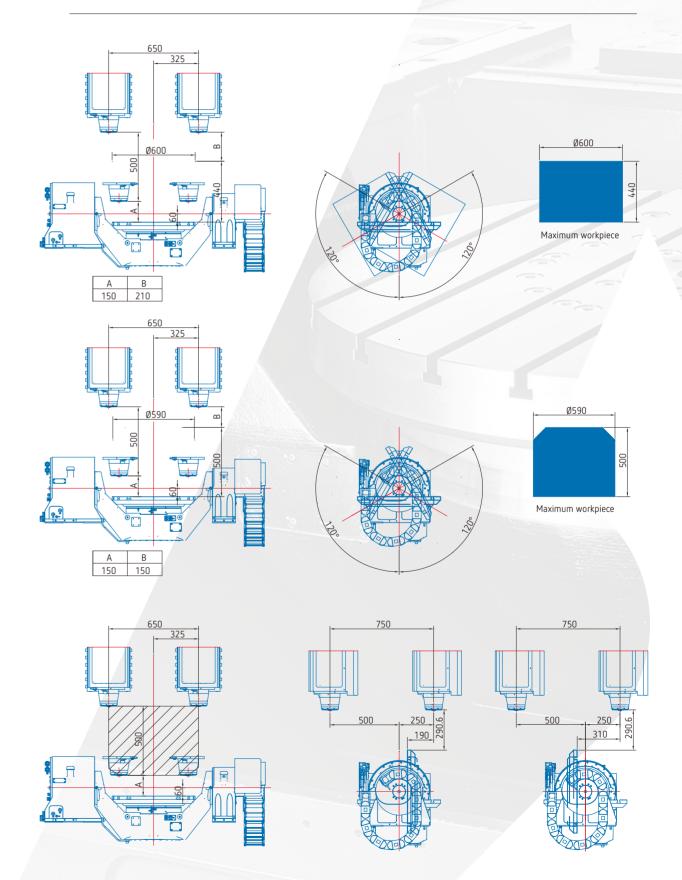
For in-process tool measurement at working conditions (spindle running at thermal stable conditions)

- > Cartridge filter
- > Paper fill
- > Through spindle 20 bar centrifugal pump or ...
- > Through spindle 70 bar screw type pump with stepless programmable pressure
- > Oil skimmer
- > Coolant chiller

Recommended for high aluminum or cast iron material cutting



Spin window


For easier view of working area when huge amount of coolant and chips are produced

Layout and workspace

Interference

Technical data

Basic parameters

LINEAR AXES		
X travel (carriage left and right)	mm	650
Y travel (gantry back and forth)	mm	750
Z travel (headstock up and down)	mm	500
Max feedrate X/Y/Z	m/min	36
WORKPIECE AND TABLE		
Max workpiece dia/height	mm	600/500
Table size (diameter)	mm	600
Maxium table load	kg	500
ROTARY AXES		
A range (swivelling)	deg	+/- 120
C (rotary)	deg	360 (unlimited)
Maximum sviwelling (A) speed	rpm	80
Maximum rotary (C) speed	rpm	200
SPINDLE 15.000rpm		
Spindle taper		HSK A63
Max Speed	rpm	15000
Power S1/S6-40%	kW	27/39
Torque S1/S6-40%	Nm	130/187
SPINDLE 20.000rpm		
Spindle taper		HSK A63
Max Speed	rpm	20000
Power S1/S6-40%	kW	25/35
Torque S1/S6-40%	Nm	86/130
TOOL CHANGER		
Magazine positions		60/96/120
Maximum lenght	mm	300
Maximum tool diameter (with adjacent pot empty)	mm	75 (125)
Maximum tool weight	kg	8
ACCURACY (VDI/DGQ 3441)		
Positionning	mm	0,005
Repeatability	mm	0,005
CONTROL UNIT		
Heidenhain		iTNC 530 HSCI / TNC 640
Siemens		840D sl
Fanuc		31iMB5
SUPPLIES		
Installed power	kVA	80
Voltage without transformer	V	400
Frequency	Hz	50/60
WEIGHT		
Machine weight including accesories (aprox.)	kg	12.000

Construction details

LINEAR AXES					
Linear guideways type			Roller type		
Linear guideways size X/Y/Z		mm	45/45/45		
Distance between X/Y axis guides		mm	500/1110		
Ballscrew type			Ball		
Ballscrew diameter/pitch		mm	40/12		
X axis motor power/torque		kW/Nm	5/17.7		
Y axis motor power/torque (x2)		kW/Nm	5/21.6 (x2)		
Z axis motor power/torque		kW/Nm	6/26.1		
WORKPIECE AND TABLE					
Number of hydraulic ports			3		
Working pressure of hydraulic ports		bar	80		
Number of pneumatic ports		561	1		
Working pressure of pneumatic port		bar	6		
ROTARY AXES		Udi	Ü		
Driving system in swivelling (A) axis			Torque motor		
Driving system in swivelling (C) axis			Torque motor		
Power and torque of swivelling (A) axis		kW/Nm	9.8/1040		
Power and torque of rotary (C) axis		kW/Nm	8.4/401		
Brake type of swivelling (A) axis		N	Hydraulic		
Braking torque of swivelling (A) axis		Nm	3200		
Brake type of rotary (C) axis			Hydraulic		
Braking torque of rotary (C) axis		Nm	2000		
SPINDLE 15.000rpm					
Motor type			Synchronous		
Bearing type front/rear			Angular ball		
Bearing cooling and lubrication			Oil/Air		
SPINDLE 20.000rpm					
Motor type			Synchronous		
Bearing type front/rear			Angular ball		
Bearing cooling and lubrication			Oil/Air		
TOOL CHANGER					
Change type			Arm		
Magazine type			DVCA		
Carrousel driving system			Servomotor		
MEASURING FEEDBACK					
Linear axes type			Linear scales		
Linear axes resolution		μm	0.001		
Rotary axes type	Rotary axes type		Rotary scale		
Rotary axes accuracy			+/- 5"		
EXTERNAL COOLANT SUPPLY					
External nozzles coolant supply (number) pressure		bar	(4x) 3		
External nozzles air supply (number) pressure		bar	(2x) 6		
Tank capacity		1	1500		
SPINDLE THROUGH COOLANT SUPPLY (STANDARD)					
High pressure pump	•	bar	20		
Filter type		561	cartdrige		
SPINDLE THROUGH COOLANT SUPPLY WITH SEPARATE TANK (OPTIONAL)					
High pressure pump	0	bar	70		
High pressure pump with stepless programable pressure	0	par	0 - 70 stepless		
Filter type		UGI	Cartdrige and paper band		
Additional			Coolant chiller and oil skimmer		
Auditional			Conquit cullier and on skillimer		

 $\mathbf{2}$